Minor Constituents of Lippia integrifolia

Cesar A. N. Catalán, Marina E. P. de Lampasona, Inés J. S. de Fenik, Carlos M. Cerda-García-Rojas, Yolanda Mora-Pérez, and Pedro Joseph-Nathan
J. Nat. Prod., 1994, 57 (2), 206-210• DOI:
10.1021/np50104a002 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50104a002 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

MINOR CONSTITUENTS OF LIPPIA INTEGRIFOLIA

Cesar A.n. Catalán,* Marina E.P. de Lampasona, Ines J.S. de Fenik,
Instituto de Química Orgánica, Facultad de Bioquímica, Quimica y Farmacia, Universidad
Nacional de Tucumán, A yacucbo 491, S.M. de Tucumán 4000, Argentina
Carlos M. Cerda-Garcia-Rojas, Yolanda Mora-Perez, and Pedro Joseph-Nathan*
Departamento de Química del Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Apartado 14-740. México, D.F., 07000 México

Abstract

Three new sesquiterpenes (1-3) possessing the 2,6,6,9-tetramethyltricyclo[5.4.0. $0^{2,4}$]undecane (lippifoliane) skeleton were isolated as minor constituents of Lippia integrifolia. Their structures and stereochemistry were elucidated from nmr data including double resonance experiments, COSY, and $n \mathrm{Oe}$, and by comparison of their ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra with those of lippifoli-1(6)-en-5-one.

Following the studies on the chemical constituents of the aromatic shrub Lippia integrifolia (Griseb.) Hieron (Verbenaceae) (1-5), we report herein the isolation, structure elucidation, and full spectral analyses of three new substances 1-3 found as minor components in the essential oil of this plant. These tricyclic sesquiterpenes are structurally related to lippifoli-1(6)-en-5-one [4], previously isolated as one of the major constituents $(2,3)$.

RESULTS AND DISCUSSION

Compounds 1 and 2 showed $[\mathrm{M}]^{+}$at $\mathrm{m} / \mathrm{z} 236$ in agreement with the molecular formula $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$. The ${ }^{1} \mathrm{H}$-nmr spectra of $\mathbf{1}$ (Table 1) showed $\mathrm{H}-6$ as a doublet ($J=$ ca. 1 Hz) due to long-range coupling with $\mathrm{H}-4$, through the carbonyl group at $\mathrm{C}-5$, as found in cyclohexanones (6). This coupling was confirmed by double resonance and COSY. These experiments also gave the information to establish the $\mathrm{CH}_{3}(15)-\mathrm{CH}(4)-\mathrm{CH}_{2}(3)-$ $\mathrm{CH}_{2}(2)-\mathrm{C}(1)$ and $\mathrm{CH}_{2}(8)-\mathrm{CH}(9)-\mathrm{CH}_{2}(11)$ fragments. In addition, long range couplings between $\mathrm{H}-8 \alpha$ and $\mathrm{Me}-13$ and between $\mathrm{H}-11 \alpha$ and $\mathrm{Me}-14$, detected by double resonance, were very useful to assign the tertiary methyl groups.

Although the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra, double resonance, and COSY experiments of 2

1

3

2

4

Table 1. ${ }^{1} \mathrm{H}$-nmr Data of Compounds 1-3'.

Proton	Compound					
	1		2		3	
	CDCl_{3}	$\mathrm{C}_{6} \mathrm{D}_{6}$	CDCl_{3}	$\mathrm{C}_{6} \mathrm{D}_{6}$	CDCl_{3}	$\mathrm{C}_{6} \mathrm{D}_{6}$
H-2 α			$1.96-2.08 \mathrm{~m}$	$1.48-1.70 \mathrm{~m}$	2.25 ddd	$1.71-1.99 \mathrm{~m}$
H-2 β	$2.31,1.84 \mathrm{~m}$	1.90, 1.68 m	$1.96-2.08 \mathrm{~m}$	1.72 ddd	2.76 ddd	2.25 m
H-3 α	1.96, 1.47 m	$1.47,1.14 \mathrm{~m}$	1.79 m	$1.48-1.70 \mathrm{~m}$	2.14 ddd	$1.71-1.99 \mathrm{~m}$
H-3			$1.96-2.08 \mathrm{~m}$	$1.48-1.70 \mathrm{~m}$	1.92 m	$1.71-1.99 \mathrm{~m}$
H-4	2.39 m	1.93 m	2.38 dddq	1.92 dddq	-	-
H-6	2.39 d	2.08 d	2.32 brs	1.71 brs	-	-
H-8 α	2.06 brdd	2.39 brdd	$1.56-1.74 \mathrm{~m}$	1.59 dd	1.17 m	1.01 brdd
H-8 ${ }^{\text {a }}$	1.59 ddd	1.59 ddd	1.56-1.74 m	1.47 brdd	1.92 m	1.73 dd
H-9	0.86 dddd	0.73 dddd	0.92 m	0.65 dddd	1.13 m	0.79 dddd
H-11 α	-0.09 t	0.04 t	1.00 t	0.87 t	0.25 t	-0.04 t
H-11 β	0.46 dd	0.30 dd	0.24 dd	$-0.03 \mathrm{dd}$	0.91 dd	0.56 dd
Me-12	1.00 s	1.13 s	0.94 brs	1.08 brs	1.09 s	1.23 s
$\mathrm{Me}-13$	1.11 brs	1.10 brs	1.28 s	1.28 s	1.26 brs	1.33 brs
Me-14	1.09 brs	0.92 brs	1.14 brs	1.14 bss	1.24 brs	0.86 brs
$\mathrm{Me}-15$	1.00 d	0.95 d	1.01 b	1.08 d	1.24 d	1.15 brs
$\mathrm{H}-\mathrm{O}$.	1.55 brs	0.41 brs	- ${ }^{\text {b }}$	0.57 brs	4.12 brs	4.34 brs

${ }^{2}$ Measured at $300 \mathrm{MHz} . J(\mathrm{~Hz})$ for compound $\mathbf{1}: J_{4,6}=1.0, J_{4,13}=6.7, J_{6,8 \mathrm{~B}}=1.8, J_{8 \alpha, 88}=13.8, J_{8 a, 9}=3.0, J_{8 a, 13}=1.5$, $J_{88,9}=9.3, J_{9.11 \mathrm{a}}=4.8, J_{9,11 \mathrm{\beta}}=8.9, J_{11 a .118}=4.8$. For compound 2: $J_{2 a, 2 \mathrm{~B}}=12.7, J_{28,3 \mathrm{a}}=11.6, J_{28,38}=5.5, J_{3 a, 4}=13.0$, $J_{38,4}=6.5, J_{4,15}=6.4, J_{4.6}=1.0, J_{8 \alpha, 8 B}=14.3, J_{8 \alpha, 9}=2.0, J_{8 B, 9}=5.8, J_{9,11 a}=5.7, J_{9,118}=9.1, J_{11 a, 118}=4.8$. For compound 3: $J_{2 \alpha, 2 \beta}=18.7, J_{2 \alpha, 3 a}=5.7, J_{2 \alpha, 3 \beta}=11.4, J_{2 \beta, 3 \alpha}=1.7, J_{2 \beta, 3 \beta}=6.3, J_{3 \alpha, 3 \beta}=13.2, J_{3 \beta, 15}=0.5, J_{8 \alpha, 8 \beta}=14.2, J_{8 \alpha, 9}=J_{8 \beta, 9}=J_{9,11 \alpha}=4.2$, $J_{9,11 \beta}=8.0, J_{11 \alpha, 11 \mathrm{~B}}=3.9$.
${ }^{6}$ Not observed.
yielded basically the same connectivity pattern as in 1 , we observed an important change in the coupling constants of the $\mathrm{CH}_{2}(8)-\mathrm{CH}(9)$ fragment due to a change in the conformation of the six-membered ring. An analysis of the vicinal coupling constants by using a generalized Karplus-type equation (7,8), as recently done for trans-humul-($9 E$)-ene-2,6-dione (5), allows us to draw the conformation of 1 and 2 as shown in Figure 1.

The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra in combination with DEPT analysis of $\mathbf{1}$ and $\mathbf{2}$ (Table 2) provided conclusive evidence to support that both hydrates (1 and 2) of 4 have the

1

3

2

4

Figure 1. Preferred conformation of $\mathbf{1 - 4}$ in solution.

Table 2. ${ }^{13} \mathrm{C}$-nmr Chemical Shifts and Multiplicities ${ }^{2}$ of Compounds 1-4.

Carbon	Compound					
	1		2		3	$4^{\text {b }}$
	CDCl_{3}	$\mathrm{C}_{6} \mathrm{D}_{6}$	CDCl_{3}	$\mathrm{C}_{6} \mathrm{D}_{6}$	$\mathrm{C}_{6} \mathrm{D}_{6}$	CDCl_{3}
C-1	77.6 s	76.8	78.7 s	77.9	157.9 s	160.2
C-2	33.75	34.2	38.8 t	38.7	25.5 t	28.7
C-3	27.6 t	27.7	31.9 t	31.6	36.7 t	30.2
C-4	44.9 d	44.9	46.4 d	46.1	72.5 s	42.4
C-5	213.7 s	212.7	212.0 s	209.8	203.4 s	201.4
C-6	62.6 d	62.8	63.7 d	63.3	138.4 s	140.0
C-7	30.9 s	31.1	30.6 s	31.0	33.9 s	33.5
C-8	37.5 t	38.0	39.4 t	39.7	43.5 t	43.5
C-9	19.1 d	19.5	22.6 d	22.6	19.3 d	19.1
C-10	23.7 s	23.9	24.7 s	24.6	19.5 s	20.4
C-11	20.9 t	20.9	15.7 t	16.0	27.4 t	26.3
C-12	28.6 q	28.9	34.0 q	34.0	28.1 q	28.9
C-13	31.7 q	31.9	25.5 q	25.5	28.4 q	27.5
C-14	22.3 q	22.4	24.4 q	24.4	22.7 q	22.8
C-15	14.8 q	15.0	14.4 q	15.0	23.7 q	16.7

${ }^{2}$ From DEPT analysis measured at 75.4 MHz .
${ }^{\mathrm{b}}$ Values for this compound are from Catalán et al. (10).
tertiary hydroxyl group at C-1 and not at C-6, because each substance showed a signal for a quaternary carbon around 77 ppm . If the hydroxyl group was at C-6, a higher value could be expected. Furthermore, each compound (1 and 2) showed a signal for a CH around 63 ppm . This high chemical shift value can be explained by the influence of the carbonyl group at C-5 and the methyl group at C-7, as observed in natural products having a similar fragment (9).

Since $\mathbf{1}$ and $\mathbf{2}$ have two additional chiral centers when compared to $\mathbf{4}$, we looked for spectral evidence to establish their relative stereochemistry. Thus, when the chemical shifts of C-11 and C-14 in 4 were compared with the corresponding values of $\mathbf{1}$ and $\mathbf{2}$ (Table 2), we observed an important change for $\mathrm{C}-11$ but not for $\mathrm{C}-14$. Given that C 11 is located at the α side and $\mathrm{C}-14$ at the β side in the three substances, the hydroxyl group at $\mathrm{C}-1$ in $\mathbf{1}$ and $\mathbf{2}$ must be α-oriented.

On the other hand, the stereochemistry at C-6 in 1 and $\mathbf{2}$ could be assigned when we observed a considerable nOe effect (ca. 25%) between $\mathrm{H}-6$ and $\mathrm{H}-11 \alpha$ in compound 1. Therefore, compound $\mathbf{1}$ corresponds to the 1,6-cis-stereoisomer and $\mathbf{2}$ to the 1,6-transstereoisomer.

Compound 3 showed $[\mathrm{M}]^{+}$at $\mathrm{m} / \mathrm{z} 234$ as required for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$. While its structure followed straightforwardly when comparing ${ }^{13} \mathrm{C}-\mathrm{nmr}$ chemical shifts with those of 4 (Table 2), the stereochemistry of the chiral center at $\mathrm{C}-4$ required further consideration. The ${ }^{1} \mathrm{H}$-nmr spectrum of $\mathbf{3}$ in CDCl_{3} showed $\mathrm{Me}-15$ as a doublet with a very small coupling constant (ca. 0.5 Hz), confirmed by careful irradiation, due to a long-range coupling with one of the protons at $\mathrm{C}-3$. This fact is in favor of an axial orientation of both the Me-15 and the coupled H-3. Furthermore, we observed a nOe effect (11%) between $\mathrm{Me}-14$ and one of the protons at $\mathrm{C}-2$. Since the relative stereochemistry of $\mathrm{Me}-14$ is β, the enhanced $\mathrm{H}-2$ is $\mathrm{H}-2 \beta$. In addition, the vicinal coupling constants of this proton revealed its equatorial orientation. By consideration of these arguments, the only selfconsistent stereostructure for 3 is as drawn in Figure 1, in which Me-15 has an α orientation.

The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ assignments for the protonated carbons of $\mathbf{1 - 3}$ are based on DEPT experiments, on literature data (10), and on residual ${ }^{13} \mathrm{C}_{-}^{1} \mathrm{H}$ coupling constants extracted from partially coupled spectra measured by setting the ${ }^{1} \mathrm{H}$ decoupler frequency on the TMS signal. Since heteronuclear residual couplings mainly depend on the frequency difference between the resonance frequency and the decoupler frequency (11-13), these distinctions are possible once the ${ }^{1} \mathrm{H}$ signals are assigned.

EXPERIMENTAL

General experimental procedures.-Hplc separations were performed on Waters equipment (M45 pump, U6K injector with 2 ml loop and $\mathrm{R}-401$ differential refractometer), using (A) a Beckman ODS column ($5 \mu, 10 \times 250 \mathrm{~mm}$) and (B) a Maxsil Phenomenex 10 C 8 column ($10 \times 500 \mathrm{~mm}$). Retention times were measured from the injection solvent peak. Nmr spectra were measured on a Varian Associates XL300GS spectrometer from solutions containing TMS as the internal reference. Optical rotations were measured on a Perkin-Elmer 241 polarimeter and mass spectra were obtained at 70 eV on a Hewlett Packard HP-5988A spectrometer. Melting points are uncorrected. Ir spectra were recorded on a Perkin-Elmer 16 FPC FT spectrophotometer.

COLLECTION, EXTRACTION, AND ISOLATION.-Air-dried aerial parts of L. integrifolia were purchased from a local market and authenticated by botanist A. Slanis from Miguel Lillo Institute, Tucumán, Argentina, where a sample (voucher no. C Catalán 580) is deposited. The essential oil was obtained by steam distillation. From 3.1 kg of aerial parts, 18.3 g of oil (0.59%) was obrained. The oil was chromatographed on a Si gel ($230-400$ mesh) column using hexane with increasing amounts of $\mathrm{Et}_{2} \mathrm{O}(2-40 \%)$; 142 fractions were collected and monitored by tlc. Fractions 62-67, containing spathulenol (1) as the major component, were combined (703 mg) and a portion (260 mg) processed by hplc using column B , eluting with MeOH $\mathrm{H}_{2} \mathrm{O}(2: 1)$ at $2 \mathrm{ml} / \mathrm{min}$. Two fractions were collected. The first contained a peak with Rt 17.1 min and the second a peak with Rt 19.0 min. The first fraction contained compound $\mathbf{1}$, which was purified by hple rechromatography on column A with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(2: 1)$ at $2.5 \mathrm{ml} / \mathrm{min}$ to give $\mathbf{1}(6.2 \mathrm{mg}, \mathrm{Rt} 23.5 \mathrm{~min})$. The second fraction contained $\mathbf{2}$ and $\mathbf{3}$, which were separated by rechromatography on column A , as above, to yield $2(8.2 \mathrm{mg}$, Rt 22 min$)$ and $3(11.3 \mathrm{mg}$, Rt 31 min).

1,6-cis-Lippifolian-1 α-ol-5-one $\{1]$.-White solid: mp $62-65^{\circ} ;[\alpha]_{599} 0,[\alpha]_{578} 0,[\alpha]_{546} 0,[\alpha]_{436}+23^{\circ}$, $[\alpha]_{365}+234^{\circ}\left(c=0.04, \mathrm{CHCl}_{3}\right) ; \operatorname{ir}\left(\mathrm{CHCl}_{3}\right) \nu \max 3590,3380,1710,1460,1375,1235,1070 \mathrm{~cm}^{-1} ; \mathrm{ms} \mathrm{m} / \mathrm{z}$ (rel. int.) $[\mathrm{M}]^{+} 236(18), 179(58), 137(23), 109(23), 83(63), 78(63), 41(100) ;{ }^{1} \mathrm{H}$ nmr see Table $1 ;{ }^{13} \mathrm{C}$ nmr see Table 2.

1,6-trans-Lippifolian-1 α-ol-5-one $[2]$.-White solid: mp $73-76^{\circ} ;[\alpha]_{989}-57,[\alpha]_{578}-57,[\alpha]_{546}-64$ $[\alpha]_{436}-96,[\alpha]_{365}-89\left(c=0.11, \mathrm{CHCl}_{3}\right) ; \operatorname{ir}\left(\mathrm{CHCl}_{3}\right) \nu \max 3600,3380,1710,1460,1365,1215 \mathrm{~cm}^{-1} ; \mathrm{ms}^{2}$ m / z (rel. int.) [M] $236(45), 208(61), 179$ (100), 152 (15), 126 (42), 109 (35), 83 (60), 67 (26), 41 (95); ${ }^{1} \mathrm{H}$ nmr see Table $1 ;{ }^{13} \mathrm{C}$ nmr see Table 2.

Lippifoli-1(6)-en-4 3 -ol-5-one $[3]$.—White solid: 49-52; $[\alpha]_{589}-81,[\alpha]_{578}-83,[\alpha]_{546}-103,[\alpha]_{436}$ $-241,[\alpha]_{365}-699\left(c=0.61, \mathrm{CHCl}_{3}\right)$; ir $\left(\mathrm{CHCl}_{3}\right) \nu \max 3590,3460,1665,1595,1436,1385,1365,1235$, $1170 \mathrm{~cm}^{-1} ; \mathrm{uv}(\mathrm{MeOH}) \lambda \max (\log \epsilon) 256(4.04) ; \mathrm{ms} m / z$ (rel. int.) $[\mathrm{M}]^{+} 234(22), 206(20), 176(100), 161$ (65), 133 (55), 105 (38), 91 (37), 77 (28), $43(86) ;{ }^{1} \mathrm{H}$ nmr see Table $1 ;{ }^{13} \mathrm{C}$ nmr see Table 2.

ACKNOWLEDGMENTS

Work in Tucumán was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas de la República de Argentina and Consejo de Investigaciones de la Universidad de Tucumán. Partial financial support from CoNaCyT, México, is acknowledged.

LITERATURE CITED

1. C.A. Catalán, D.I. Iglesias, J.A. Retamar, J.B. Iturraspe, G.H. Dartayet, and E.G. Gros, Phytochemistry, 22, 1507 (1983).
2. G.H. Dartayet, C.A. Catalán, J.A. Retamar, and E.G. Gros, Phytochemistry, 23, 688 (1984).
3. C.A.N. Catalán, I.J.S. de Fenik, G.H. Dartayet, and E.G. Gros, Pbytochemistry, 30, 1323 (1991),
4. C.A.N. Catalán, I.J.S. de Fenik, P.J. de Arriazu, and W.C.M.C. Kokke, Pbytachemistry, 31, 4025 (1992).
5. C.A.N. Catalán, M.E.P. de Lampasona, I.J.S. de Fenik, C.M. Cerda-García-Rojas, and P. JosephNathan, J. Nat. Prod., 56, 381 (1993).
6. M.F. Grenier-Laustalot, A. Lectard, A. Lichanot, and F. Metras, Org. Magn. Reson., 10, 86 (1977).
7. C.A.G. Haasnoot, F.A.A.M. de Leeuw, and C. Altona, Tetrahedron, 36, 2783 (1980).
8. C.M. Cerda-García-Rojas, L.G. Zepeda, and P. Joseph-Nathan, Tetrahedron Comp. Methodol, 3, 113 (1990).
9. H. Sun, Q. Zhou, T. Fujita, Y. Takeda, Y. Minami, T. Maronaka, Z. Lin, and X. Shen, Pbytochemistry, 31, 1418 (1992).
10. C.A.N. Catalăn, I.J.S. de Fenik, C. Cerda-García-Rojas, Y. Mora-Pérez, and P. Joseph-Nathan, Spectroscopy, 11, 1 (1993).
11. P. Joseph-Narhan, M.P. González, L.F. Johnson, and J.N. Shoolery, Org. Magn. Reson., 3, 23 (1971).
12. L.U. Román, R.E. del Río, J.D. Hernández, C.M. Cerda, D. Cervantes, R. Castañeda, and P. JosephNathan, J. Org. Chem., 50, 3965 (1985).
13. P. Joseph-Nathan, "Resonancia Magnética Nuclear de Hidrógeno-l y de Carbono-13," Organization of American States, Washington, 1982, pp. 135-138.

Received 5 April 1993

